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A STEREOCONTROLLED SYNTHESIS OF THE METHYL ESTER OF (%)-NONACTIC ACID

Paul A. Bartlett® and Karen K. Jernstedt

Department of Chemistry, University of California
Berkeley, California 94720

Iodine-induced cyclization of a homoallylic phosphate and hydrogenation of a 2,3~
dehydrononactic acid derivative are used to introduce the chiral centers selectively
1n a highly efficient synthesis of methyl nonactate.

Nonactic acaid, the subunit of the macrocyclic i1onophore nonactln,l has been
the target of a number of syntheses during recent years.2 As part of a program
concerned with acyeglic stereocontrol,3 we developed a stereoselective synthesis
of the methyl ester of (%)-nonactic acaid, 8, in which all of the chiral centers
are introduced ain a controlled manner.

4¢3 1s epoxidized stereo- and regio-

3a 13c.

Dimethyl 1,7-octadien-4-yl phosphate (1)
specifically in 63% yield by our two-step phosphate cyclization process.
NMR analysis of the epoxy phosphate 25 showed 1t to be contaminated with less than
5% of i1someric material. Both the epoxide and phosphate moieties react cleanly
with LiAlH4 in ether to provide the eaythio diol ;.5 The cyclic i1odophosphate
intermediate 1in the epoxidation sequenceBa can alsoc be cleaved with LiAlH,, fur-
nishing the diol 3 directly. However, this reaction 1s accompanied by saignificant
reductive elimination, returning up to 50% of 1,7-octadien-4-0l, and the two-step
process via the epoxide 1s preferred. The enythro diol 3 1s converted to the

aldehyde diacetate using the acetylation and ozonolysis steps reported by

ol

2 for the threo series.

Gerlach and Wetter
A titanium tetrachloride-catalyzed aldol condensatlon6 and subsequent Jones
oxidation convert the aldehyde g to the B-ketoester 2.5 With the complete carbon
skeleton of nonactic acid assembled, the tetrahydrofuran ring is generated by
acetate cleavage and dehydration with oxalic acid in refluxing methylene chloride,

affording methyl E-ep:1-2,3-dehydrononactate §.5 From this dehydration reaction a
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a: 2.2 eq. Iz, MeCN, 25°C, 24 hr, b: 1.1 eq. NaQOMe, THF, 0°C, 7 hr:
c: 3 eq. Li1AlHy4, ether, 0°C, 1hr; d- Ac,0, pyridine, 25°C, 12 hr;

e: O3, CHpCly, -78°C, 30min; f: MeCH=C(OMe)0OSiMes, TiCly, CHpCl,, -78 — 0°C, 12 hr;
g: Cr03, H3504, acetone/water, 0°C, 30 min; h: KpCO3, MeOH, 25°C, 2 hr:
1+ HO,CCOsH, CH2C12, A, 2 hr; J: 3.5 atm Hgy, Rh/A1203, MeOH, 25°C, 60 hr;

k EtO;CNNCO,Et, Ph3P, PhCO,H, THF, 25°C, 12 hr, £: NaOMe, MeOH, 25°C, 18 hr
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single 1somer 1s 1solated, to whaich we assign the E geometry based on precedent7

and subsequent elaboration,

The remaining two chiral centers are introduced by hydrogenation of the
double bond, using 5% rhodium on alumina as catalyst. As desired, the catalyst
delivers the hydrogen to the least encumbered face of the w-system (as in 9,
establishing the desired configurations at C-2 and C-3.

180-MHz lH-NMR analysis of the product from this reduction confirmed the

identity of the major isomer as the methyl ester of 8-epinonactic acid (l),s'8

and demonstrated that the stereoselectivity of the hydrogenation i1s better than

9

85:15. Inversion of the hydroxyl configuration at C-8 using the same procedure

2d

described by White completes the synthesis of methyl (%)-nonactate (8) in

better than 25% overall yield from 1l,7-octadien-4-ol.
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