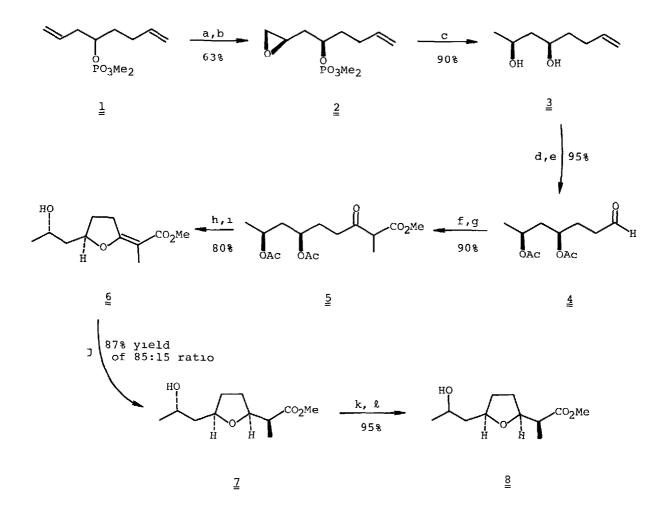
Tetrahedron Letters Vol. 21, pp 1607 - 1610 © Pergamon Press Ltd. 1980. Printed in Great Britain 0040-4039/80/0422-1607/02.00/0

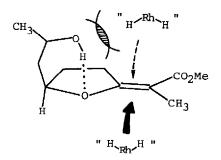
A STEREOCONTROLLED SYNTHESIS OF THE METHYL ESTER OF (±)-NONACTIC ACID

Paul A. Bartlett* and Karen K. Jernstedt

Department of Chemistry, University of California Berkeley, California 94720


Indine-induced cyclization of a homoallylic phosphate and hydrogenation of a 2,3dehydrononactic acid derivative are used to introduce the chiral centers selectively in a highly efficient synthesis of methyl nonactate.

Nonactic acid, the subunit of the macrocyclic ionophore nonactin,¹ has been the target of a number of syntheses during recent years.² As part of a program concerned with acyclic stereocontrol,³ we developed a stereoselective synthesis of the methyl ester of (\pm)-nonactic acid, <u>8</u>, in which all of the chiral centers are introduced in a controlled manner.


Dimethyl 1,7-octadien-4-yl phosphate $(\underline{1})^{4,5}$ is epoxidized stereo- and regiospecifically in 63% yield by our two-step phosphate cyclization process.^{3a} 1³C-NMR analysis of the epoxy phosphate $\underline{2}^5$ showed it to be contaminated with less than 5% of isomeric material. Both the epoxide and phosphate moleties react cleanly with LiAlH₄ in ether to provide the *erythro* diol $\underline{3}$.⁵ The cyclic iodophosphate intermediate in the epoxidation sequence^{3a} can also be cleaved with LiAlH₄, furnishing the diol $\underline{3}$ directly. However, this reaction is accompanied by significant reductive elimination, returning up to 50% of 1,7-octadien-4-ol, and the two-step process via the epoxide is preferred. The *erythro* diol $\underline{3}$ is converted to the aldehyde diacetate $\underline{4}$ using the acetylation and ozonolysis steps reported by Gerlach and Wetter^{2b} for the *three* series.

A titanium tetrachloride-catalyzed aldol condensation⁶ and subsequent Jones oxidation convert the aldehyde $\underline{4}$ to the β -ketoester $\underline{5}$.⁵ With the complete carbon skeleton of nonactic acid assembled, the tetrahydrofuran ring is generated by acetate cleavage and dehydration with oxalic acid in refluxing methylene chloride, affording methyl E-epi-2,3-dehydrononactate $\underline{6}$.⁵ From this dehydration reaction a

1607

a: 2.2 eq. I₂, MeCN, 25°C, 24 hr, b: 1.1 eq. NaOMe, THF, 0°C, 7 hr;
c: 3 eq. L1AlH₄, ether, 0°C, 1 hr; d· Ac₂O, pyridine, 25°C, 12 hr;
e: O₃, CH₂Cl₂, -78°C, 30 min; f: MeCH=C(OMe)OS1Me₃, T1Cl₄, CH₂Cl₂, -78 → 0°C, 12 hr;
g: CrO₃, H₂SO₄, acetone/water, 0°C, 30 min; h: K₂CO₃, MeOH, 25°C, 2 hr;
1. HO₂CCO₂H, CH₂Cl₂, Δ, 2 hr; j: 3.5 atm H₂, Rh/Al₂O₃, MeOH, 25°C, 60 hr;
k EtO₂CNNCO₂Et, Ph₃P, PhCO₂H, THF, 25°C, 12 hr, *l*: NaOMe, MeOH, 25°C, 18 hr

2

single isomer is isolated, to which we assign the <u>E</u> geometry based on precedent⁷ and subsequent elaboration.

The remaining two chiral centers are introduced by hydrogenation of the double bond, using 5% rhodium on alumina as catalyst. As desired, the catalyst delivers the hydrogen to the least encumbered face of the π -system (as in $\underline{9}$), establishing the desired configurations at C-2 and C-3.

180-MHz ¹H-NMR analysis of the product from this reduction confirmed the identity of the major isomer as the methyl ester of 8-epinonactic acid $(\underline{7})$,^{5,8} and demonstrated that the stereoselectivity of the hydrogenation is better than 85:15.⁹ Inversion of the hydroxyl configuration at C-8 using the same procedure described by White^{2d} completes the synthesis of methyl (±)-nonactate ($\underline{8}$) in better than 25% overall yield from 1,7-octadien-4-ol.

Acknowledgements We are grateful to Mr. Edward Brown for technical assistance, to Professor J.D. White for providing us with an authentic sample and $^{\rm l}H-NMR$ spectrum of methyl ($^{\pm}$)-8-epinonactate, and to the Chevron Research Company, Eli Lilly Company, and the National Institutes of Health (grant no. CA-16616) for financial support.

REFERENCES AND NOTES

- J. Dominguez, J.D. Dunitz, H. Gerlach, and V. Prelog, <u>Helv. Chim. Acta</u>, <u>45</u>, 129 (1962); H. Gerlach and V. Prelog, <u>Justus Liebigs Ann. Chem.</u>, <u>669</u>, 121 (1963).
- 2. (a) G. Beck and E. Henseleit, <u>Chem. Ber.</u>, <u>104</u>, 21 (1971), (b) H. Gerlach and H. Wetter, <u>Helv. Chim. Acta</u>, <u>57</u>, 2306 (1974); (c) H. Zak and U. Schmidt, <u>Angew. Chem.</u>, <u>Int. Edit. Engl.</u>, <u>14</u>, 432 (1975); J. Gombos, E. Haslinger, H. Zak, and U. Schmidt, <u>Monatsh. Chem.</u>, <u>106</u>, 219 (1975); U. Schmidt, J. Gombos, E. Haslinger, and H. Zak, <u>Chem. Ber.</u>, <u>109</u>, 2628 (1976);
 (d) M.J. Arco, M.H. Trammell, and J.D. White, <u>J. Org. Chem.</u>, <u>41</u>, 2075 (1976).
- 3. (a) P.A. Bartlett and K.K. Jernstedt, <u>J. Am. Chem. Soc.</u>, <u>99</u>, 4829 (1977);
 (b) P.A. Bartlett and J. Myerson, <u>ibid.</u>, <u>100</u>, 3950 (1978);
 (c) P.A. Bartlett and W.F. Hahne, <u>J. Org. Chem.</u>, <u>44</u>, 882 (1979);
 (d) P.A. Bartlett and J. Myerson, <u>ibid.</u>, <u>44</u>, 1625 (1979);
 (e) P.A. Bartlett and J.L. Adams, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 337 (1980).
- Prepared from the alcohol (S.E. Wilson, <u>Tetrahedron Lett.</u>, 4651 (1975)) in 98% yield using KH and ClPO₃Me₂.
- 5. Satisfactory combustion analysis and spectra were obtained for this compound.
- 6. K. Saigo, M. Osaki, and T. Mukaiyama, Chem. Lett., 989 (1975).
- 7. T.A. Bryson, J. Org. Chem., <u>38</u>, 3428 (1973).
- Comparison was made with a ¹H-NMR spectrum and authentic sample which were kindly supplied by Professor J.D. White.
- 9. The most diagnostic resonances indicating the presence of the minor isomer, methyl 6-epinonactate, are those of the methyl groups (dilute solutions in CDCl₃ (l% TMS)): for the 8-epi ester, <u>7</u>: δ l.l2 (J=7.1 Hz), l.l7 (J=6.4 Hz), 3.70 (MeO); for the 6-epi ester: δ l.l8 (J=6.2 Hz), l.22 (J=7.0 Hz), 3.68 (MeO). Under the same conditions, methyl nonactate <u>8</u> shows resonances at δ l.31 (J=7.0 Hz), l.20 (J=6.3 Hz), 3.69 (MeO), and methyl 6,8-diepinonactate shows resonances at δ l.21 (J=6 3 Hz), 1.22 (J=6.9 Hz), 3.68 (MeO).

(Received in USA 14 January 1980)

1610